
HAVEGE: A User-Level Software Heuristic
for Generating Empirically Strong
Random Numbers

ANDRÉ SEZNEC
IRISA-INRIA
and
NICOLAS SENDRIER
INRIA

Random numbers with high cryptographic quality are needed to enhance the security of cryptogra-
phy applications. Software heuristics for generating empirically strong random number sequences
rely on entropy gathering by measuring unpredictable external events. These generators only de-
liver a few bits per event. This limits them to being used as seeds for pseudorandom generators.

General-purpose processors feature a large number of hardware mechanisms that aim to im-
prove performance: caches, branch predictors, The state of these components is not architec-
tural (i.e., the result of an ordinary application does not depend on it). It is also volatile and cannot
be directly monitored by the user. On the other hand, every operating system interrupt modifies
thousands of these binary volatile states.

In this article, we present and analyze HAVEGE (HArdware Volatile Entropy Gathering and
Expansion), a new user-level software heuristic to generate practically strong random numbers
on general-purpose computers. The hardware clock cycle counter of the processor can be used to
gather part of the entropy/uncertainty introduced by operating system interrupts in the internal
states of the processor. Then, we show how this entropy gathering technique can be combined
with pseudorandom number generation in HAVEGE. Since the internal state of HAVEGE includes
thousands of internal volatile hardware states, it seems impossible even for the user itself to
reproduce the generated sequences.

Categories and Subject Descriptors: C.1 [Processor Architectures]; D.4 [Operating System];
G.3 [Probability and Statistics]

General Terms: Algorithms, Security

Additional Key Words and Phrases: Cryptography, random number generation, superscalar pro-
cessor, hardware clock counters

This work was supported by INRIA under Action de recherches coordonnées HIPSOR.
Authors’ addresses: A. Seznec, IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France,
email: seznec@irisa.fr; N. Sendrier, INRIA, Domaine de Voluceau, Rocquencourt, 78153 Le Chesnay
Cedex, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1049-3301/03/1000-0334 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003, Pages 334–346.

HAVEGE: User-Level Software Heuristic for Strong Random Numbers • 335

1. INTRODUCTION

The availability of a random number generator with high cryptographic quali-
ties is one of the central issues of cryptographic implementations. This article
proposes HAVEGE (HArdware Volatile Entropy Gathering and Expansion), a
new software heuristic for generating “empirically strong random numbers” on
general-purpose computers. We say that a random bit generator is empirically
strong if there seems to be no practical way of distinguishing its output sequence
from a sequence of independent random numbers uniformly distributed over
{0, 1}. This is equivalent to saying that there seems to be no practical algorithm
that, given part of the output sequence, can guess the next bit with success
probability larger than 1/2 (see, e.g., L’Ecuyer and Proulx [1989]). Of course,
things would be more satisfactory if we could prove that no such algorithm ex-
ists. However, this type of proof exists for none of the practical random number
generator proposed thus far. Note that the definition of an empirically strong
random number generator implies that there seems to be no practical way to
set this particular generator or any other generator in such a status that it will
reproduce the same sequences.

The first contribution of this paper is the introduction of the HAVEG (HArd-
ware Volatile Entropy Gathering) family of algorithms. General-purpose com-
puters are built around processors featuring complex hardware mechanisms
that aim to increase performance. A significant part of the global state of the
microprocessor is not architecturally visible through the instruction set (e.g.,
caches, branch predictors and buffers). Any external event involving an operat-
ing system interrupt or simply using the system bus and/or the memory system
can induce the modification of hundreds or thousands of these nonarchitectural
internal states. The HAVEG algorithms uses the hardware clock cycle counter
as an indirect probe to extract (part of) the entropy/uncertainty introduced in
the internal volatile hardware states by these external events. On current PCs
and workstations, the HAVEG algorithms collects several tens of thousands of
empirically strong random bits, on average, per every operating system inter-
rupt, that is, HAVEG is three to four orders of magnitude more efficient than
previous software entropy gathering techniques.

The second contribution of the article is the introduction of HAVEGE.
HAVEGE combines HAVEG-like entropy gathering with simple pseudorandom
number generation. The HAVEGE generator exhibits a very high throughput
(in the same range as the UNIX rand pseudorandom function). The internal
state of HAVEGE consists of classical data mapped in memory and in thou-
sands of binary volatile hardware states (addresses of data blocks present in
the cache, branch prediction table contents, . . .). Most of these hardware states
are maintained unpredictable by HAVEGE. The global status of those hard-
ware states is not accessible, even for the user running the generator. Any
external event introduces major perturbation in this internal state of the gen-
erator. Any attempt to indirectly collect the invisible part of the internal state
alters it. Therefore, reproducing the sequences produced by HAVEGE appears
virtually impossible.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

336 • A. Seznec and N. Sendrier

The remainder of the article is organized as follows. In Section 2, we describe
some of the states of internal components that influence the execution time of
simple sequences of instructions. Then we point out that most of these states
are not directly monitorable by the user and will also be modified by the exter-
nal events. Section 3 introduces and analyzes the HAVEG family of algorithms.
These algorithms gather the uncertainty introduced in internal volatile hard-
ware states by operating system interrupts. Section 4 presents the HAVEGE
generator: a user-level self-modifying random walk (the walk is self-modified
using the hardware cycle counter) is used to both generate sequences of random
numbers at a very high rate and continuously gather and propagate the uncer-
tainty introduced by external events in internal hardware states. The internal
invisible state of the HAVEGE generator is analyzed. Section 5 presents some
empirical evidence of randomness of the sequences generated by HAVEG and
HAVEGE. Section 6 briefly compares HAVEG and HAVEGE with the current
practice of software generation of empirically strong random numbers. Finally,
Section 7 summarizes this study.

2. MICROARCHITECTURE STATES AND THE EXECUTION TIME OF A
SEQUENCE OF INSTRUCTIONS

In a computer system built around modern superscalar processors, the pre-
cise number of cycles needed to execute a (very short) sequence of instructions
depends on many internal states of hardware components inside the micropro-
cessor as well as on external events to the process.

For instance the precise number of cycles for executing a simple sequence
of instructions including at least one conditional branch and one load/store
depends on branch prediction outcome and on the presence or absence of data
and instructions in the different caches of the memory hierarchy. In addition
to these binary status (present/absent or correct/wrong), the execution time of
a sequence also depends on the precise status of all instructions in all stages of
the execution pipeline and in numerous buffers in the processor.

The status of all these internal states depends on the past execution on the
processor. These states are affected by events external to the process such as
operating system interrupts or transactions on the system bus. Seznec and
Sendrier [2002] showed on current workstations and PCs thousands of hard-
ware volatile states are modified in the data/instruction caches and branch
predictors on each operating system interrupt.

General purpose instruction sets do not provide user-level direct ways to
monitor the internal states of the processor. The only possible mean for an
observer to record the global internal states of a microprocessor system would
be to freeze the hardware clock and probe all states in the processor. Such
functionality is provided for testing the processor in development labs, but is
not available at user level on commodity PCs and workstations! Therefore, the
knowledge of the global state of a microprocessor for an arbitrary point in any
program is unattainable for the owner of the process and a fortiori for the
attacker.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

HAVEGE: User-Level Software Heuristic for Strong Random Numbers • 337

int Entrop[SIZEENTROPY];
int A;

1 while (NBINTERRUPT < NMININT){
2 if (A==0) A++; else A--;
3 Entrop[K] = (Entrop[K] << 5) ˆ (Entrop[K] >> 27) ˆ HARDTICK() ˆ
4 (Entrop[(K + 1) & (SIZEENTROPY - 1)] >> 31);
5 K = (K + 1) & (SIZEENTROPY - 1);
6 **repeat lines 2 to 5 XX times **
7 }

Fig. 1. Gathering uncertainty from the instruction cache and branch predictor.

However, the instruction sets of most modern microprocessor systems pro-
vide the user with a direct access to the hardware clock counter. Reading the
hardware clock counter can be used as an indirect probe to collect information
on the internal hardware states in the processor.

3. HAVEG ALGORITHMS: GATHERING (PART OF) THE UNCERTAINTY
INJECTED BY OPERATING SYSTEM INTERRUPTS

A large number of internal unmonitorable hardware states are modified by any
operating system interrupt. Therefore, one can expect that significant uncer-
tainty is injected in these volatile hardware states on each operating system
interrupt.

We present a simple family of entropy gathering algorithms, the HAVEG
(HArdware Volatile Entropy Gathering) algorithms. Unlike previous entropy
gathering implementations, HAVEG algorithms are run at user level. The
HAVEG algorithms use the hardware clock counter to gather uncertainty from
a short sequence of instructions that touches a few unmonitorable hardware
states. We have designed HAVEG algorithms to activate different components
in a microprocessor.

An HAVEG algorithm designed for gathering uncertainty from the instruc-
tion cache and the branch prediction structure is illustrated in Figure 1 and
detailed below.

HARDTICK() is a function that reads the hardware clock counter. It also tests
the difference with the last read value. The NBINTERRUPT counter is incremented
by function HARDTICK() whenever this difference is higher than a threshold
indicating that there was an interrupt between two successive reads of the
hardware clock counter.

Throughout the loop, HARDTICK() is called many times and the result of this
read is combined through exclusive-or and shifts in the Entrop array. There
is much more entropy/uncertainty in the least significant bits of the hardware
clock counter than in the most significant ones. Therefore, on line 3, we combine
this read value with a circular shift of the previously accumulated data. More-
over, the uncertainty is also diffused on the whole array Entrop through com-
bination through exclusive-or and shift with the next element in array (line 4).

The unrolling factor (XX) should be adjusted for each of the targeted archi-
tectures: XX is chosen in order to maximize the size of the compiled loop body

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

338 • A. Seznec and N. Sendrier

without exceeding the size of the instruction cache and without overflowing the
branch prediction structures sizes.

The while loop is run until the number of encountered interrupts reaches
NMININT. SIZEENTROPY is the size of the table used for gathering the read value
of the hardware clock counter.

Note that the flow of instructions executed by the loop body of the algorithm
is completely deterministic. Therefore, in the absence of operating system in-
terrupt, the content of the instruction cache, and also of the branch predictor,
should be completely predictable: we checked that the iterations of the loop
just after an interrupt present much more uncertainty than the iterations that
occur long after the last interrupt.

The Entrop array gathers (part of) the uncertainty injected in the instruction
cache and the branch predictor by the operating system interrupts. The content
of the Entrop array is saved and the Entrop array is reinitialized to zero.

4. HAVEGE: COMBINING ENTROPY/UNCERTAINTY GATHERING
AND PSEUDORANDOM NUMBER GENERATION

In order to accommodate applications requiring very high volume of random
numbers, we modified the HAVEG algorithm to generate on-the-fly random
numbers through a very simple algorithm.

HAVEGE (HArdware Volatile Entropy Gathering and Expansion) combines
concurrent continuous hardware volatile entropy gathering with pseudoran-
dom number generation. The presented implementation uses a very simple
pseudorandom number generator: two concurrent self-modifying walks in a
single table are run while the collected entropy continuously updates the walk
table.

4.1 Algorithm Presentation

The HAVEG algorithm family activates unmonitorable hardware states in a
predetermined order. Therefore, long after the last interrupt the content of the
activated unmonitorable hardware states is highly predictable (for instance, the
content of a branch predictor entry). In the HAVEGE algorithm, the volatile
hardware states are visited in unpredictable order and/or are maintained in
externally unknown states.

An HAVEGE algorithm is illustrated on Figure 2. It has been designed
to fully activate both instruction and data L1 caches. This algorithm can be
adapted to any processor featuring an instruction cache and a data cache. The
illustrated algorithm also activates a significant part of the branch prediction
tables.

First, an initialization phase consists in filling a memory table Walk twice as
large as the size CACHESIZE of the L1 data cache with empirically strong random
numbers.1 This is equivalent to seeding the generator. This phase can be done
using an HAVEG algorithm for instance.

1This implementation assumes that CACHESIZE is a power of two.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

HAVEGE: User-Level Software Heuristic for Strong Random Numbers • 339

int Walk[2*CACHESIZE];
register int pt, PT, PT2;
register int i;

0 INITIALIZATION of pt, PT2 and Walk[0,..,2*CACHESIZE-1] with
0 empirically strong random numbers through HAVEG
1 loop{
2 if (pt & 8*CACHESIZE) X++;
3 if (pt & 16*CACHESIZE) X++;
4 PT= pt & (2*CACHESIZE-1); pt= Walk[PT];
5 PT2= Walk[(PT2 & CACHESIZE-1)ˆ((PT ˆ CACHESIZE) & CACHESIZE)];
6 RESULT[i]= PT2 ˆpt;
7 T= ((T << 7)+ HardClock()) ˆ (T >> 25);
8 pt= pt ˆ T;
9 Walk[PT]= pt;
10 i++;
11 ** repeat lines 2 to 9 YY times **
12 }

Fig. 2. An HAVEGE algorithm.

The HAVEGE main loop is described below:

—HardClock() is a function that reads and returns the hardware clock counter
value.

—Two concurrent walks are performed in parallel in a table of 4-byte integers.
The table is twice as large as the L1 data cache. That is, if the walks are
random then the probability of a hit in the cache is very close to 1/2 on each
data reading in the table.

—Two distinct table entries are read through indirect pointers on each step
(Lines 4 and 5). We take their bitwise exclusive-or to generate a random
number (Line 6). The purpose of the exclusive-or of the two data read on the
Walk table is to hide the content of the Walk table from any possible observer.
If we had used directly the data read in the Walk table as a random number
then an observer might have been able to follow the walk for a while and
might try to guess (part of) the content of the table.

—Two data dependent tests (line 2 and line 3) were introduced in each iteration
of the walk to make its behavior dependent on branch prediction information.
For both branches, the probability of the branch being taken is 1/2 if the
content of the table is random.

—The number of unrolled steps (YY) in the main loop of HAVEGE should be
tuned to get the inner loop body code just fitting in the instruction cache.2

This maximizes the number of instruction blocks (and associated branch
prediction information) removed from the instruction cache on each operating
system interrupt.

4.2 Internal State of the HAVEGE Generator

With a pseudorandom number generator, at any step in the computation, one
can define its internal state as the values of internal variables and tables. This

2This unrolling factor depends on the compiler and on the compiler options.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

340 • A. Seznec and N. Sendrier

internal state determines the future behavior of the generator and the sequence
of numbers that it will generate.

At any moment, one can also define the internal state of the HAVEGE gen-
erator as the content of the Walk table, the values of PT and PT2 pointers and
the values of all volatile hardware states in the processor (branch predictors,
instruction and data caches, . . .), on the system bus and in the memory system
that are touched by HAVEGE. An analysis presented by Seznec and Sendrier
[2002] shows that this represents thousands of binary states on modern super-
scalar processors.

4.3 Reproducing HAVEGE Sequences

In practice, the security of the HAVEGE generator relies on both the unfeasibil-
ity of reproducing its internal state, and on the continuous and unmonitorable
injection of new uncertainty in its internal state by external events.

First, as pointed out in Section 2, there does not exist any mean for the user
itself to collect the precise internal volatile states of the processor at a given
point. Therefore, nobody, not even the user can access the global internal state
of the HAVEGE generator. To reproduce the sequence of the generator after a
given point (in the absence of new random states injection), one would have to
reinitiate the algorithm with its complete internal state, that is, the contents
of the table, internal variables and the pointers, but also the internal volatile
hardware states. In practice, this task is intractable for the attacker. Collecting
the global hardware state of the processor requires freezing the hardware clock
on the machine while running the random number generator: If an attacker
has got this right on your machine, then don’t even think about protecting your
data!

Second, the knowledge of the internal state of the HAVEGE generator on
a given cycle is not sufficient to reproduce the sequences. The internal state
is also continuously touched by all the events on the memory system, on the
bus system and by the operating system interrupts. Then even if the external
observer had been able to capture the internal state of the generator at a point
then he/she would only be able to follow the walk for a (very) limited delay
unless he/she is also able to guess (monitor) all the new states continuously
injected by external events.

5. EMPIRICAL EVIDENCE OF RANDOMNESS

In this section, we provide some empirical evidence on the performance of the
HAVEG and HAVEGE generators in terms of statistical distribution of the
generated sequences and in terms of throughput.

Proving that a sequence of bits is random is virtually impossible. How-
ever most non-random sequences fail some algorithmic tests. We first describe
the battery of statistical tests that were used as empirical evidence of ran-
domness for the generated sequences. Then we present an evaluation of the
entropy/uncertainty collected by HAVEG. Finally, we present results of the sta-
tistical tests on HAVEGE and also the HAVEGE throughput on current hard-
ware platforms.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

HAVEGE: User-Level Software Heuristic for Strong Random Numbers • 341

5.1 Statistical Tests for Randomness

The battery of tests for randomness used as empirical evidence of randomness
in this paper includes Lempel–Ziv compression test, entropy test, chi2 test,
Monte Carlo tests from ent,3 the FIPS-140-2 test suite for random number
generators [FIPS-140-2 2001],4 the DIEHARD suite and the NIST statistical
suite for random number generator [Rukhin et al. 2001].

The methodology we use is as follows: Sequences of 16 Mbytes of random
numbers are collected and tested. Each of the four steps is run on several se-
quences (typically 10).

As a first step, we use the ent suite as a filter, since it is not CPU time
consuming: we never encountered a 16-Mbyte sequence that was considered
random by the other tests in the suite, but fails badly on ent. So whenever one
16-Mbyte sequence out of 10 fails badly on one of the ent tests, we reject the
generator.

The second step consists in applying the FIPS-140-2 test suite (runs tests and
poker tests) on the sequences. In a 16-Mbyte sequence, 6400 nonoverlapping
20000 bits sequences are tested. Testing pseudorandom number generators
such as Mersenne twister [Matsumoto and Nishimura 1998] with recognized
uniform distribution properties, we remarked that the cumulated number of
failed tests over the 6400 nonoverlapping 20000 bits sequences generally varies
between 1 and 11 with exceptional cases with no failures and with 12 and 13
failures. Whenever discrepancies from these results are detected, (i.e, more
rejected 20000 bits sequences in one or more 16-Mbyte sequences out of 10), we
reject the generator.

In a third step, we apply the NIST statistical suite for random number gen-
erator. This suite consists in the 16 different statistical tests. Since the per-
formance of the distributed suite is not adapted to test large random number
sequences, we reengineer the suite while respecting all its functionalities. Tests
were rewritten in order to reduce CPU time. Every test is applied, but the
most time consuming tests are not applied on all nonoverlapping subsequences,
but only on a sample of these nonoverlapping subsequences. Tests are run us-
ing 0.001 as a threshold. The NIST suite is run on 16-Mbyte random number
files. For each 16-Mbyte file, it produces from 350 to 508 p-values. The gen-
erator is rejected whenever the number of failures (number of p-values less
than 0.001) is constantly nonzero on a suite of ten 16-Mbyte files collected in a
row.

In order to determine this criterion, we applied the test suite on a the
Mersenne twister that is known to exhibit very reliable uniform distribution
properties. In tests on 1000 successive 16-Mbyte sequences generated with dif-
ferent random seeds, we obtained a maximum of 5 nonnull successive number
of failures. and we encountered 730 sequences with no failure, 199 sequences
with a single failure, 50 sequences with 2 failures, 12 sequences with 3 failures,
3 sequences with 4 failures, 4 sequences with 5 failures and 2 sequences with
6 failures.

3Available from http://www.fourmilab.ch/random/.
4C code available from http://people.qualcomm.com/ggr/QC/index.html.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

342 • A. Seznec and N. Sendrier

However, in practice, we did not encounter HAVEG or HAVEGE-like gen-
erators that were borderline for the NIST statistical suite, that is, either the
generator was clearly passing the suite with only a few of the ten 16-Mbyte
sequences encountering a few failures or every 16-Mbyte sequence was en-
countering a large number of failures (more than ten).

The DIEHARD suite is used as a final test. In practice in our experiments,
we did not encounter any generator (related to HAVEGE and HAVEG) that
passed the other tests and was rejected by DIEHARD.5

Note that passing our battery of tests for randomness is not a proof of ran-
domness. However, it may be considered as an indicator that finding and ex-
ploiting a bias in the generated sequences would be very difficult, particularly
for a nondeterministic random number generator.

5.2 Estimating the Amount of Collected Entropy/Uncertainty through HAVEG

HAVEG is collecting entropy after each OS interrupt. The OS interrupt is the
source of entropy. The Entrop array constitutes a single measure on this random
source and we would like to evaluate the entropy of this measure.

5.2.1 Standard Evaluation of Entropy Fails. Let f (k) be the probability
of appearance of event k from a source, the standard definition of entropy of a
random source is:

H = −
∑

k

f (k) log2 f (k). (1)

Unfortunately, this formula does not allow to evaluate the entropy of a source
with large entropy (in practice, larger than 30 bits) because the required sample
size would be too large.

5.2.2 Empirical Estimation of “Entropy”/Uncertainty. In order to empiri-
cally estimate the range of “entropy” or uncertainty introduced in average by
each OS interrupt that is collected by a HAVEG algorithm, we used the follow-
ing method.

Fixing the size of the Entrop array to 65536, we determine a threshold for
NMININT above which the content of Entrop array is consistently considered as
random by our statistical test suite. On each experiment, a 16-Mbyte file was
collected corresponding to 64 successive runs.

Using this empirical estimation, we found that, on all the target platforms
of HAVEGE in 2002 [Seznec and Sendrier 2002], the HAVEG algorithm il-
lustrated in Figure 1 allows to gather at least 8K–64K random bits in av-
erage per operating system interrupt (from 8K on Itanium/Linux to 64K on
Solaris/Ultrasparc II). That is, at least three to four orders of magnitude
more than the “entropy” gathered by previously available entropy-gathering
techniques.

5DIEHARD is a popular battery of tests for randomness distribution of number sequence that
has been developed by George Marsaglia over the last thirty years. DIEHARD is available at
http://stat.fsu.edu/~geo/.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

HAVEGE: User-Level Software Heuristic for Strong Random Numbers • 343

Note that this empirical estimation provides an upper bound on the actual
entropy that is collected by HAVEG, since the battery of tests may fail to detect
some correlation or structures in the sequences. Then, it might be considered
safer to collect only a smaller number of bits per interruption than given by our
empirical estimation.

5.3 Empirical Evidence of Randomness for Sequences Generated by HAVEGE

We checked that the sequences generated by the HAVEGE algorithm consis-
tently pass our battery of statistical tests for randomness. This holds for all the
supported target platforms [Seznec and Sendrier 2002].

The tests were performed with the following protocol. The Walk table is
initialized with random numbers through the HAVEG algorithm presented in
Section 3. We also checked that the content of the Walk table remains random,
even after generating random numbers for a long time.

As an example, we illustrate the results of an extensive execution (100 runs)
of the third step (the NIST statistical suite) of our test on the HAVEGE algo-
rithm running on a Pentium 4 system under Linux operating system. Three
days of CPU time on a Pentium 4 system were needed to complete this experi-
ment. The NIST statistical suite was applied on 1000 16-Mbyte sequences gen-
erated by HAVEGE. A maximum of 5 consecutive 16-Mbyte sequences with one
or more failures was encountered in this experiment. In the total experiment,
that is, on 1000 consecutive 16-Mbyte sequences generated by the described
HAVEGE algorithm on a Pentium 4, we encountered 732 sequences with no
failure, 195 sequences with a single failure, 45 sequences with 2 failures, 14 se-
quences with 3 failures, 7 sequences with 4 failures, 5 sequences with 5 failures
and 2 sequences with 6 failures. The distribution of failures is very similar to
the distribution of failures that we obtained on sequences generated with the
Mersenne twister generator.

5.4 Throughput of HAVEGE

We checked the performance of the presented HAVEGE algorithm on several
hardware configurations available in 2002 for both Pentium III(II) Linux and
UltraSparc II Solaris. In average on Pentium III, 920 million ±5% cycles were
needed to collect 32 Mbytes of random numbers, while on the UltraSparc II,
500 million ±5% cycles were sufficient. This throughput is in the same range
as the throughput of standard pseudorandom number generators.

6. RELATED WORK ON SOFTWARE GENERATION OF EMPIRICALLY
STRONG RANDOM NUMBERS

Computers are built to execute usual software algorithms in a deterministic
fashion. Some computer systems feature a dedicated hardware random number
generator (e.g., Jun and Kocher [1999]).

In the absence of such a hardware random number generator on a com-
puter, the current practice is to measure parameters of some external events
through software. This technique is known as entropy gathering. Many events

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

344 • A. Seznec and N. Sendrier

(mouse, keyboard, disk, network, . . .) occurring in a computer, though deter-
ministic by nature, are sources of uncertainty. For instance, there is a pos-
sibility to exploit the randomness from chaotic air turbulence in disk drives
through software timing of the accesses to particular sectors on the disk [Davis
et al. 1994]. Jakobsson et al. [1998] claimed that only 5 random bits per
minute could be extracted by this process. Such an approach is therefore not
very practical. Jakobsson et al. also proposed a “utility” mode where 577 bits
per minute are obtained. Standard statistical tests such as DIEHARD suite
were unable to distinguish the output of the utility mode from truly random
sequence.

HAVEG can be seen as an extension of these entropy gathering techniques.
These former entropy gathering implementations were using only measurable
external parameters (date, duration, size of the data, data itself, . . .). HAVEG
leverages the modifications that external events induce on the global state of
the machine particularly on unmonitorable internal states.

Due to the limited throughput of former entropy gathering techniques, prac-
tical solutions in cryptography use a pseudorandom number generator periodi-
cally reseeded with random numbers obtained by entropy gathering techniques
as for instance in Yarrow [Kelsey et al. 2000]. In these approaches, whenever
the internal state of the pseudorandom number generator is compromised at
a point, the complete future sequence is compromised until new reseeding is
performed. This has to be contrasted with HAVEGE which is continuously re-
seeded by all the external events.

Among the other advantages of HAVEG and HAVEGE over previous entropy
gathering techniques, let us point out that the implementation is very simple
and portable. Porting one of the previous entropy gathering techniques to a
new platform (architecture and/or operating system) is a major effort since it
generally involves developments in the operating system. By contrast, devel-
oping variations of HAVEGE for other processor architectures, other operating
systems and other compilers is straightforward. One has only to adapt a few pa-
rameters related to instruction and data cache sizes and branch predictor sizes.
The program is implemented at user level and does not rely on any operating
system call.

7. CONCLUSION

In this article, we have presented HAVEGE, a new heuristic to build high per-
formance, software-based and empirically strong random number generators
for computer systems built around modern superscalar processors.

HAVEGE packs pseudorandom number generation and entropy gather-
ing on hardware volatile states in a single code. Reproducing the sequence
would require to replicate the internal state of the generator, but this inter-
nal state consists in part of volatile hardware states. The generator is also
continuously fed with new inputs on every interrupt. Reseeding is therefore
automatic. Moreover, no one, not even the user itself, is able to access the com-
plete internal state (seed) of the generator, since any attempt (except freez-
ing the hardware clock) to access the volatile hardware states will alter these

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

HAVEGE: User-Level Software Heuristic for Strong Random Numbers • 345

volatile states. The sequences pass an important battery of tests checking
randomness.

Furthermore, while to the best of our knowledge the generated sequences
do not suffer any exploitable bias, robustness of the HAVEGE generator
could be further increased by combining it with other pseudorandom number
generators.

The technological trend in computer design is to use more and more complex
processors featuring out-of-order execution and new hardware mechanisms for
speculative execution, for memory (in)dependence prediction [Kessler 1999;
Chrysos and Emer 1998; Moshovos and Sohi 1997] as well as on-chip thread
parallelism [Tullsen et al. 1996; Diefendhorff 1999a; Diefendhorff 1999b]. This
will further create new uncertainty in the internal states of the processor and
also create new opportunities to propagate this uncertainty. At the same time,
new functionalities are also added in operating systems, therefore each oper-
ating system interrupt will touch an increasing set of volatile hardware states.
Therefore, our approach for generating empirically strong random numbers on
PCs and workstations will remain valid in the foreseeable future.

ACKNOWLEDGMENTS

The authors would like to thank Matthieu Lemoine and Assia Djabelkhir for
their contributions in the early phase of this study. They would also like to
thank Pierre L’Ecuyer, editor of this special issue, for his help in polishing the
final version of the article.

REFERENCES

CHRYSOS, G. AND EMER, J. 1998. Memory dependence prediction using store sets. In Proceedings
of the 25th Annual International Symposium on Computer Architecture (ISCA-98). 142–154.

DAVIS, D., IHAKA, R., AND FENSTERMACHER, P. 1994. Cryptographic randomness from air turbulence
in disk drives. Lecture Notes in Computer Science, vol. 839, Springer-Verlag, New York, 114–120.

DIEFENDHORFF, K. 1999a. Compaq chooses SMT for Alpha. Microproc. Rep. 13, 13, 3–8.
DIEFENDHORFF, K. 1999b. Power4 focuses on memory bandwidth. Microproc. Rep. 13, 16, 1–6.
FIPS-140-2. 2001. Security requirements for cryptographic modules. Federal Information Pro-

cessing Standard publication 140-2.
JAKOBSSON, M., SHRIVER, E., HILLYER, B., AND JUELS, A. 1998. A practical secure physical random bit

generator. In Proceedings of the 5th ACM Conference on Computer and Communications Security
(San Francisco, Calif., Nov.). ACM, New York, pp. 103–111.

JUN, B. AND KOCHER, P. 1999. The Intel random number generator. Cryptography Research, Inc.,
White Paper prepared for Intel Corporation.

KELSEY, J., SCHNEIER, B., AND FERGUSON, N. 2000. Yarrow-160: Notes on the design and analysis of
the yarrow cryptographic pseudorandom number generator. In Selected Areas in Cryptography,
SAC’99, H. Heys and C. Adams, Eds. Lecture Notes in Computer Science, vol. 1758. Springer-
Verlag, New York.

KESSLER, R. E. 1999. The Alpha 21264 microprocessor. IEEE Micro 19, 2, 24–36.
L’ECUYER, P. AND PROULX, R. 1989. About polynomial-time unpredictable generators. In Proceed-

ings of the 1989 Winter Simulation Conference. IEEE Press, Los Alamitos, Calif., 467–476.
MATSUMOTO, M. AND NISHIMURA, T. 1998. Mersenne twister: A 623-dimensionally equidistributed

uniform pseudorandom number generator. ACM Trans. Mod. Comput. Simul. 8, 1, 3–30.
MOSHOVOS, A. AND SOHI, G. S. 1997. Streamlining inter-operation memory communication via data

dependence prediction. In Proceedings of the 30th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-97). ACM, New York, 235–247.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

346 • A. Seznec and N. Sendrier

RUKHIN, A., SOTO, J., NECHVATAL, J., SMID, M., BARKER, E., LEIGH, S., LEVENSON, M., VANGEL, M., BANKS,
D., HECKERT, A., DRAY, J., AND VO, S. 2001. A statistical test suite for random and pseudorandom
number generators for cryptographic applications. National Institute of Standards and Technol-
ogy publication 800-22.

SEZNEC, A. AND SENDRIER, N. 2002. Hardware volatile entropy gathering and expansion: generat-
ing unpredictable random number at user level. Tech. Rep. 4592, INRIA.

TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, H. M., LO, J. L., AND STAMM, R. L. 1996. Exploiting
choice : Instruction fetch and issue on an implementable simultaneous MultiThreading processor.
In Proceedings of the 23rd Annual International Symposium on Computer Architecure. ACM,
New York, 191–202.

Received September 2002; revised February 2003 and April 2003; accepted June 2003

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 4, October 2003.

